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Abstract. We propose a thresholded ensemble model for ordinal regres-
sion problems. The model consists of a weighted ensemble of confidence
functions and an ordered vector of thresholds. We derive novel large-
margin bounds of common error functions, such as the classification error
and the absolute error. In addition to some existing algorithms, we also
study two novel boosting approaches for constructing thresholded ensem-
bles. Both our approaches not only are simpler than existing algorithms,
but also have a stronger connection to the large-margin bounds. In addi-
tion, they have comparable performance to SVM-based algorithms, but
enjoy the benefit of faster training. Experimental results on benchmark
datasets demonstrate the usefulness of our boosting approaches.

1 Introduction

Ordinal regression resides between multiclass classification and metric regression
in the area of supervised learning. They have many applications in social science
and information retrieval to match human preferences. In an ordinal regression
problem, examples are labeled with a set of K ≥ 2 discrete ranks, which, unlike
general class labels, also carry ordering preferences. However, ordinal regression
is not exactly the same as common metric regression, because the label set is of
finite size and metric distance between ranks is undefined.

Several approaches for ordinal regression were proposed in recent years from
a machine learning perspective. For example, Herbrich et al. [1] designed an algo-
rithm with support vector machines (SVM). Other SVM formulations were first
studied by Shashua and Levin [2], and some improved ones were later proposed
by Chu and Keerthi [3]. Crammer and Singer [4] generalized the perceptron
learning rule for ordinal regression in an online setting. These approaches are all
extended from well-known binary classification algorithms [5]. In addition, they
share a common property in predicting: the discrete rank comes from thresh-
olding a continuous potential value, which represents an ordering preference.
Ideally, examples with higher ranks should have higher potential values.

In the special case of K = 2, ordinal regression is similar to binary classifica-
tion [6]. If we interpret the similarity from the other side, the confidence function
for a binary classifier can be naturally used as an ordering preference. For exam-
ple, Freund et al. [7] proposed a boosting algorithm, RankBoost, that constructs
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an ensemble of those confidence functions to form a better ordering preference.
However, RankBoost was not specifically designed for ordinal regression. Hence,
some efforts are needed when applying RankBoost for ordinal regression.

In this work, we combine the ideas of thresholding and ensemble learning
to propose a thresholded ensemble model for ordinal regression. In our model,
potential values are computed from an ensemble of confidence functions, and
then thresholded to rank labels. It is well-known that ensemble is useful and
powerful in approximating complex functions for classification and metric re-
gression [8]. Our model shall inherit the same advantages for ordinal regression.
Furthermore, we define margins for the thresholded ensemble model, and derive
novel large-margin bounds of its out-of-sample error. The results indicate that
large-margin thresholded ensembles could generalize well.

Algorithms for constructing thresholded ensembles are also studied. We not
only combine RankBoost with a thresholding algorithm, but also propose two
simpler boosting formulations, named ordinal regression boosting (ORBoost).
ORBoost formulations have stronger connections with the large-margin bounds
that we derive, and are direct generalizations to the famous AdaBoost algo-
rithm [9]. Experimental results demonstrate that ORBoost formulations share
some good properties with AdaBoost. They usually outperform RankBoost, and
have comparable performance to SVM-based algorithms.

This paper is organized as follows. Section 2 introduces ordinal regression, as
well as the thresholded ensemble model. Large-margin bounds for thresholded
ensembles are derived in Sect. 3. Then, an extended RankBoost algorithm and
two ORBoost formulations, which construct thresholded ensembles, are discussed
in Sect. 4. We show the experimental results in Sect. 5, and conclude in Sect. 6.

2 Thresholded Ensemble Model for Ordinal Regression

In an ordinal regression problem, we are given a set of training examples S =
{(xn, yn)}N

n=1, where each input vector xn ∈ R
D is associated with an ordinal

label (i.e., rank) yn. We assume that yn belongs to a set {1, 2, . . . , K}. The goal
is to find an ordinal regression rule G(x) that predicts the rank y of an unseen
input vector x. For a theoretic setting, we shall assume that all input-rank pairs
are drawn i.i.d. from some unknown distribution D.

The setting above looks similar to that of a multiclass classification problem.
Hence, a general classification error,1

EC(G,D) = E(x,y)∼DJG(x) 6= yK,

can be used to measure the performance of G. However, the classification error
does not consider the ordering preference of the ranks. One naive interpretation
of the ordering preference is as follows: for an example (x, y) with y = 4, if
G1(x) = 3 and G2(x) = 1, G1 is preferred over G2 on that example. A common

1 J·K = 1 when the inner condition is true, and 0 otherwise.
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practice to encode such preference is to use the absolute error:

EA(G,D) = E(x,y)∼D |G(x) − y| .

Next, we propose the thresholded ensemble model for ordinal regression. As
the name suggests, the model has two components: a vector of thresholds, and
an ensemble of confidence functions.

Thresholded models are widely used for ordinal regression [3,4]. The thresh-
olds can be thought as estimated scales that reflect the discrete nature of ordinal
regression. The ordinal regression rule, denoted as GH,θ, is illustrated in Fig. 1.
Here H(x) computes the potential value of x, and θ is a (K − 1) dimensional
ordered vector that contains the thresholds (θ1 ≤ θ2 ≤ · · · ≤ θK−1). We shall
denote GH,θ as Gθ when H is clear from the context. Then, if we let θ0 = −∞
and θK = ∞, the ordinal regression rule is

Gθ(x) = min {k : H(x) ≤ θk} = max {k : H(x) > θk−1} = 1 +

K−1
∑

k=1

JH(x) > θkK.

In the thresholded ensemble model, we take an ensemble of confidence func-
tions to compute the potentials. That is,

H(x) = HT (x) =

T
∑

t=1

αtht(x), αt ∈ R.

We shall assume that the confidence function ht comes from a hypothesis set H,
and has an output range [−1, 1]. A special case of the confidence function, which
only outputs −1 or 1, would be called a binary classifier. Each confidence function
reflects a possibly imperfect ordering preference. The ensemble linearly combines
the ordering preferences with α. Note that we allow αt to be any real value, which
means that it is possible to reverse the ordering preference of ht in the ensemble
when necessary.

Ensemble models in general have been successfully used for classification and
metric regression [8]. They not only introduce more stable predictions through
the linear combination, but also provide sufficient power for approximating com-
plex functions. These properties shall be inherited by the thresholded ensemble
model for ordinal regression.

3 Large-Margin Bounds for Thresholded Ensembles

Margin is an important concept in structural risk minimization [10]. Many large-
margin error bounds were proposed based on the intuition that large margins
lead to good generalization. They are typically of the form

E1(G,D) ≤ E2(G,Su, ∆) + complexity term.

Here E1(G,D) is the generalization error of interest, such as EA(G,D). Su de-
notes the uniform distribution on the set S, and E2(G,Su, ∆) represents some
training error with margin ∆, which will be further explained in this section.
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Fig. 1. The thresholded model and the margins of a correctly-predicted example

For ordinal regression, Herbrich et al. [1] derived a large-margin bound for a
thresholded ordinal regression rule G. Unfortunately the bound is quite restricted
since it requires that E2(G,Su, ∆) = 0. In addition, the bound uses a definition
of margin that has O(N2) terms, which makes it more complicated to design
algorithms that relate to the bound. Another bound was derived by Shashua
and Levin [2]. The bound is based on a margin definition of only O(KN) terms,
and is applicable to the thresholded ensemble model. However, the bound is
loose when T , the size of the ensemble, is large, because its complexity term
grows with T .

In this section, we derive novel large-margin bounds of different error func-
tions for the thresholded ensemble model. The bounds are extended from the
results of Schapire et al. [11]. Our bounds are based on a margin definition
of O(KN) terms. Similar to the results of Schapire et al., our bounds do not
require E2(G,Su, ∆) = 0, and their complexity terms do not grow with T .

3.1 Margins

The margins with respect to a thresholded model are illustrated in Fig. 1. Intu-
itively, we expect the potential value H(x) to be in the correct interval (θy−1, θy],
and we want H(x) to be far from the boundaries (thresholds):

Definition 1. Consider a given thresholded ensemble Gθ(x).

1. The margin of an example (x, y) with respect to θk is defined as

ρk(x, y) =

{

H(x) − θk, if y > k;

θk − H(x), if y ≤ k.

2. The normalized margin ρ̄k(x, y) is defined as

ρ̄k(x, y) = ρk(x, y)

/

(

T
∑

t=1

|αt| +
K−1
∑

k=1

|θk|
)

.

Definition 1 is similar to the definition by Shashua and Levin [2], which is
analogous to the definition of margins in binary classification. A negative ρk(x, y)
would indicate an incorrect prediction.

For each example (x, y), we can obtain (K − 1) margins from Definition 1.
However, two of them are of the most importance. The first one is ρy−1(x, y),
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which is the margin to the left (lower) boundary of the correct interval. The other
is ρy(x, y), which is the margin to the right (upper) boundary. We will give them
special names: the left-margin ρL(x, y), and the right-margin ρR(x, y). Note that
by definition, ρL(x, 1) = ρR(x, K) = ∞.

∆-classification error: Next, we take a closer look at the error functions for
thresholded ensemble models. If we make a minor assumption that the degener-
ate cases ρ̄R(x, y) = 0 are of an infinitesimal probability,

EC(Gθ,D) = E(x,y)∼DJGθ(x) 6= yK

= E(x,y)∼DJρ̄L(x, y) ≤ 0 or ρ̄R(x, y) ≤ 0K.

The definition could be generalized by expecting both margins to be larger
than ∆. That is, define the ∆-classification error as

EC(Gθ,D, ∆) = E(x,y)∼DJρ̄L(x, y) ≤ ∆ or ρ̄R(x, y) ≤ ∆K.

Then, EC(Gθ,D) is just a special case with ∆ = 0.

∆-boundary error: The “or” operation of EC(Gθ,D, ∆) is not easy to handle
in the proof of the coming bounds. An alternative choice is the ∆-boundary
error:

EB(Gθ,D, ∆) = E(x,y)∼D











Jρ̄R(x, y) ≤ ∆K, if y = 1;

Jρ̄L(x, y) ≤ ∆K, if y = K;
1
2 · (Jρ̄L(x, y) ≤ ∆K + Jρ̄R(x, y) ≤ ∆K) , otherwise.

The ∆-boundary error and the ∆-classification error are equivalent up to a
constant. That is, for any (Gθ,D, ∆),

1
2EC(Gθ,D, ∆) ≤ EB(Gθ,D, ∆) ≤ EC(Gθ,D, ∆). (1)

∆-absolute error: We can analogously define the ∆-absolute error as

EA(Gθ,D, ∆) = E(x,y)∼D

K−1
∑

k=1

Jρ̄k(x, y) ≤ ∆K.

Then, if we assume that the degenerate cases ρk(x, y) = 0 happen with an
infinitesimal probability, EA(Gθ,D) is just a special case with ∆ = 0.

3.2 Large-Margin Bounds

An important observation for deriving our bounds is that EB and EA can be
written with respect to an additional sampling of k. For example,

EA(Gθ,D, ∆) = (K − 1)E(x,y)∼D,k∼{1,...,K−1}
u
Jρ̄k(x, y) ≤ ∆K.
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Equivalently, we can define a distribution D̂ by D and {1, . . . , K − 1}u to gen-
erate the tuple (x, y, k). Then EA(Gθ,D) is simply the portion of nonposi-
tive ρ̄k(x, y) under D̂. Consider an extended training set Ŝ = {(xn, yn, k)}
with N(K − 1) elements. Each element is a possible outcome from D̂. Note,
however, that these elements are not all independent. For example, (xn, yn, 1)
and (xn, yn, 2) are dependent. Thus, we cannot directly use the whole Ŝ as a set
of i.i.d. outcomes from D̂.

Fortunately, some subsets of Ŝ contain independent outcomes from D̂. One
way to extract such subsets is to choose one kn from {1, . . . , K − 1}u for each ex-

ample (xn, yn) independently. The subset would be named T = {(xn, yn, kn)}N
n=1.

Then, we can obtain a large-margin bound of the absolute error:

Theorem 1. Consider a set H, which contains only binary classifiers, is negation-

complete,2 and has VC-dimension d. Let δ > 0, and N > d + K − 1 = d̂. Then

with probability at least 1− δ over the random choice of the training set S, every

thresholded ensemble Gθ(x), where the associated H is constructed with h ∈ H,

satisfies the following bound for all ∆ > 0:

EA(Gθ,D) ≤ EA(Gθ ,Su, ∆) + O





K√
N

(

d̂ log2(N/d̂)

∆2
+ log

1

δ

)1/2


 .

Proof. The key is to reduce the ordinal regression problem to a binary classifica-
tion problem, which consists of training examples derived from (xn, yn, kn) ∈ T :

(Xn, Yn) =

{

(

(xn,1kn
) , +1

)

, if yn > kn;
(

(xn,1kn
) ,−1

)

, if yn ≤ kn,
(2)

where 1m is a vector of length (K − 1) with a single 1 at the m-th dimension
and 0 elsewhere. The test examples are constructed similarly with (x, y, k) ∼ D̂.
Then, large-margin bounds for the ordinal regression problem can be inferred
from those for the binary classification problem, as shown in Appendix A. ut

Similarly, if we look at the boundary error,

EB(Gθ,D, ∆) = E(x,y)∼D,k∼By
Jρ̄k(x, y) ≤ ∆K,

for some distribution By on {L, R}. Then, a similar proof leads to

Theorem 2. For the same conditions as of Theorem 1,

EB(Gθ,D) ≤ EB(Gθ ,Su, ∆) + O





1√
N

(

d̂ log2(N/d̂)

∆2
+ log

1

δ

)1/2


 .

Then, a large-margin bound of the classification error can immediately be derived
by applying (1).

2 h ∈ H ⇐⇒ (−h) ∈ H, where (−h)(x) = −
`

h(x)
´

for all x.
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Corollary 1. For the same conditions as of Theorem 1,

EC(Gθ,D) ≤ 2EC(Gθ,Su, ∆) + O





1√
N

(

d̂ log2(N/d̂)

∆2
+ log

1

δ

)1/2


 .

Similar bounds can be derived with another large-margin theorem [11, The-
orem 4] when H contains confidence functions rather than binary classifiers.
These bounds provide motivations for building algorithms with margin-related
formulations.

4 Boosting Algorithms for Thresholded Ensembles

The bounds in the previous section are applicable to thresholded ensembles gen-
erated from any algorithms. One possible algorithm, for example, is an SVM-
based approach [3] with special kernels [12]. In this section, we focus on another
branch of approaches: boosting. Boosting approaches can iteratively grow the en-
semble H(x), and have been successful in classification and metric regression [8].
Our study includes an extension to the RankBoost algorithm [7] and two novel
formulations that we propose.

4.1 RankBoost for Ordinal Regression

RankBoost [7] constructs a weighted ensemble of confidence functions based
on the following large-margin concept: for each pair (i, j) such that yi > yj ,
the difference between their potential values, Ht(xi) − Ht(xj), is desired to be
positive and large. Thus, in the t-th iteration, the algorithm chooses (ht, αt) to
approximately minimize

∑

yi>yj

e−Ht−1(xi)−αtht(xi)+Ht−1(xj)+αtht(xj). (3)

Our efforts in extending RankBoost for ordinal regression are discussed as
follows:

Computing αt: Two approaches can be used to determine αt in RankBoost [7]:

1. Obtain the optimal αt by numerical search (confidence functions) or analyt-
ical solution (binary classifiers).

2. Minimize an upper bound of (3).

If ht(xn) is monotonic with respect to yn, the optimal αt obtained from ap-
proach 1 is ∞, and one single ht would dominate the ensemble. This situation
not only makes the ensemble less stable, but also limits its power. For exam-
ple, if (yn, ht(xn)) pairs for four examples are (1,−1), (2, 0), (3, 1), and (4, 1),
ranks 3 and 4 on the last two examples cannot be distinguished by ht. We have
frequently observed such a degenerate situation, called partial matching, in real-
world experiments, even when ht is as simple as a decision stump. Thus, we shall
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use approach 2 for our experiments. Note, however, that when partial matching
happens, the magnitude of αt from approach 2 can still be relatively large, and
may cause numerical difficulties.

Obtaining θ: After RankBoost computes a potential function H(x), a reason-
able way to obtain the thresholds based on training examples is

θ = argminϑ EA(Gϑ,Su). (4)

The combination of RankBoost and the absolute error criterion (4) would be
called RankBoost-AE. The optimal range of ϑk can be efficiently determined
by dynamic programming. For simplicity and stability, we assign θk to be the
middle value in the optimal range. The algorithm that aims at EC instead of
EA can be similarly derived.

4.2 Ordinal Regression Boosting with Left-Right Margins

The idea of ordinal regression boosting comes from the definition of margins
in Sect. 3. As indicated by our bounds, we want the margins to be as large
as possible. To achieve this goal, our algorithms, similar to AdaBoost, work on
minimizing the exponential margin loss.

First, we introduce a simple formulation called ordinal regression boosting
with left-right margins (ORBoost-LR), which tries to minimize

N
∑

n=1

[

e−ρL(xn,yn) + e−ρR(xn,yn)
]

. (5)

The formulation can be thought as maximizing the soft-min of the left- and right-
margins. Similar to RankBoost, the minimization is performed in an iterative
manner. In each iteration, a confidence function ht is chosen, its weight αt is
computed, and the vector θ is updated. If we plug in the margin definition
to (5), we can see that the iteration steps should be designed to approximately
minimize

N
∑

n=1

[

ϕneαtht(xn)−θyn + ϕ−1
n eθyn−1−αtht(xn)

]

, (6)

where ϕn = eHt−1(xn). Next, we discuss these three steps in detail.

Choosing ht: Mason et al. [13] explained AdaBoost as a gradient descent
technique in function space. We derive ORBoost-LR using the same technique.
We first choose a confidence function ht that is close to the negative gradient:

ht = argmin
h∈H

N
∑

n=1

h(xn)
(

ϕne−θyn − ϕ−1
n eθyn−1

)

.

This step can be performed with the help of another learning algorithm, called
the base learner.
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Computing αt: Similar to RankBoost, we minimize an upper bound of (6),
which is based on a piece-wise linear approximation of ex for x ∈ [−1, 0] and
x ∈ [0, 1]. The bound can be written as W+eα + W−e−α, with

W+ =
∑

ht(xn)>0

ht(xn)ϕne−θyn −
∑

ht(xn)<0

ht(xn)ϕ−1
n eθyn−1 ,

W− =
∑

ht(xn)>0

ht(xn)ϕ−1
n eθyn−1 −

∑

ht(xn)<0

ht(xn)ϕne−θyn .

Then, the optimal αt for the bound can be computed by 1
2 log W−

W+
.

Note that the upper bound is equal to (6) if ht(xn) ∈ {−1, 0, 1}. Thus,
when ht is a binary classifier, the optimal αt can be exactly determined. Another
remark here is that αt is finite under some mild conditions which make both W+

and W− positive. Thus, unlike RankBoost, ORBoost-LR rarely sets αt to ∞.

Updating θ: Note that when the pair (ht, αt) is fixed, (6) can be reorganized

as
∑K−1

k=1 Wk,+eθk + Wk,−e−θk . Then, each θk can be computed analytically,
uniquely, and independently. However, when each θk is updated independently,
the thresholds may not be ordered. Hence, we propose to add an additional
ordering constraint to (6). That is, choosing θ by solving

min
ϑ

K−1
∑

k=1

Wk,+eϑk + Wk,−e−ϑk (7)

s.t. ϑ1 ≤ ϑ2 ≤ · · · ≤ ϑK−1.

An efficient algorithm for solving (7) can be obtained from by a simple modifica-
tion of the pool adjacent violators (PAV) algorithm for isotonic regression [14].

Combination of the steps: ORBoost-LR works by combining the three steps
above sequentially in each iteration. Note that after ht is determined, αt and θt

can be either jointly optimized, or cyclically updated. However, we found that
joint or cyclic optimization does not always introduce better performance, and
could sometimes cause ORBoost-LR to overfit. Thus, we only execute each step
once in each iteration.

4.3 Ordinal Regression Boosting with All Margins

ORBoost with all margins (ORBoost-All) operates on

N
∑

n=1

K−1
∑

k=1

e−ρk(xn,yn) (8)

instead of (6). The derivations for the three steps are almost the same as
ORBoost-LR. We shall just make some remarks.

Updating θ: When using (8) to update the thresholds, we have proved that
each θk can be updated uniquely and independently, while still being ordered [5].
Thus, we do not need to implement the PAV algorithm for ORBoost-All.
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Relationship between algorithm and theory: A simple relation is that for
any ∆, e−Aρ̄k(xn,yn) is an upper bound of e−A∆ · Jρ̄k(xn, yn) ≤ ∆K. If we take A
to be the normalization term of ρ̄k, we can see that

– ORBoost-All works on minimizing an upper bound of EA(Gθ,Su, ∆).
– ORBoost-LR works to minimizing an upper bound of EB(Gθ,Su, ∆), or

1
2EC(Gθ,Su, ∆).

ORBoost-All not only minimizes an upper bound, but provably also mini-
mizes the term EA(Gθ,Su, ∆) exponentially fast with a sufficiently strong choice
of ht. The proof relies on an extension of the training error theorem of Ada-
Boost [11, Theorem 5]. Similar proof can be used for ORBoost-LR.

Connection to other algorithms: ORBoost approaches are direct general-
izations of AdaBoost using the gradient descent optimization point of view. In
the special case of K = 2, both ORBoost approaches are almost the same as
AdaBoost with an additional term θ1. Note that the term θ1 can be thought as
the coefficient of a constant classifier. Interestingly, Rudin et al. [6] proved the
connection between RankBoost and AdaBoost when including a constant clas-
sifier in the ensemble. Thus, when K = 2, RankBoost-EA, ORBoost-LR, and
ORBoost-All, all share some similarity with AdaBoost.

ORBoost formulations also have connections with SVM-based algorithms. In
particular, ORBoost-LR has a counterpart of SVM with explicit constraints
(SVM-EXC), and ORBoost-All is related to SVM with implicit constraints
(SVM-IMC) [3]. These connections follow closely with the links between Ada-
Boost and SVM [12,15].

5 Experiments

In this section, we compare the three boosting formulations for constructing the
thresholded ensemble model. We also compare these formulations with SVM-
based algorithms.

Two sets of confidence functions are used in the experiments. The first one
is the set of perceptrons

{

sign
(

wT x + b
)

: w ∈ R
D, b ∈ R

}

. The RCD-bias algo-
rithm is known to work well with AdaBoost [16], and is adopted as our base
learner.

The second set is
{

tanh(wT x + b) : wT w + b2 = γ2
}

, which contains normal-
ized sigmoid functions. Note that sigmoid functions smoothen the output of
perceptrons, and the smoothness is controlled by the parameter γ. We use a
naive base learner for normalized sigmoid functions as follows: RCD-bias is first
performed to get a perceptron. Then, the weights and bias of the perceptron are
normalized, and the outputs are smoothened. Throughout the experiments we
use γ = 4, which was picked with a few experimental runs on some datasets.

5.1 Artificial Dataset

We first verify that the idea of the thresholded ensemble model works with an
artificial 2-D dataset (Fig. 2(a)). Figure 2(b) depicts the separating boundaries
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Fig. 2. An artificial 2-D dataset and the learned boundaries with ORBoost-All

of the thresholded ensemble of 200 perceptrons constructed by ORBoost-All. By
combining perceptrons, ORBoost-All works reasonably well in approximating
the nonlinear boundaries. A similar plot can be obtained with ORBoost-LR.
RankBoost-AE cannot perform well on this dataset due to numerical difficulties
(see Subsect. 4.1) after only 5 iterations.

If we use a thresholded ensemble of 200 normalized sigmoid functions, it is ob-
served that ORBoost-All, ORBoost-LR, and RankBoost-AE perform similarly.
The result of ORBoost-All (Fig. 2(c)) shows that the separating boundaries are
much smoother because each sigmoid function is smooth. As we shall discuss
later, the smoothness can be important for some ordinal regression problems.

5.2 Benchmark Datasets

Next, we perform experiments with eight benchmark datasets3 that were used
by Chu and Keerthi [3]. The datasets are quantized from some metric regression
datasets. We use the same K = 10, the same “training/test” partition ratio, and
also average the results over 20 trials. Thus, we can compare RankBoost and
ORBoost fairly with the SVM-based results of Chu and Keerthi [3].

The results on the abalone dataset with T up to 2000 are given in Fig. 3. The
training errors are shown in the top plots, while the test errors are shown in the
bottom plots. Based on these results, we have several remarks:

RankBoost vs. ORBoost: RankBoost-AE can usually decrease both the
training classification and the training absolute errors faster than ORBoost al-
gorithms. However, such property often lead to consistently worse test error than
both ORBoost-LR and ORBoost-All. An explanation is that although the Rank-
Boost ensemble orders the training examples well, the current estimate of θ is
not used to decide (ht, αt). Thus, the two components (HT , θ) of the thresholded
ensemble model are not jointly considered, and the greediness in constructing
only HT results in overfitting. In contrast, ORBoost-LR and ORBoost-All take
into consideration the current θ in choosing (ht, αt) and the current HT in up-
dating θ. Hence, a better pair of (HT , θ) could be obtained.

3 pyrimdines, machineCPU, boston, abalone, bank, computer, california, and census.
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Fig. 3. Errors on the abalone dataset over 20 runs

ORBoost-LR vs. ORBoost-All: Both ORBoost formulations inherit a good
property from AdaBoost: not very vulnerable to overfitting. ORBoost-LR is
better on test classification errors, while ORBoost-All is better on test absolute
errors. This is partially justified by our discussion in Subsect. 4.3 that the two
formulations minimize different margin-related upper bounds. A similar observa-
tion was made by Chu and Keerthi [3] on SVM-EXC and SVM-IMC algorithms.
Note, however, that ORBoost-LR with perceptrons minimizes the training clas-
sification error slower than ORBoost-All on this dataset, because the additional
ordering constraint of θ in ORBoost-LR slows down the convergence.

Perceptron vs. sigmoid: Formulations with sigmoid functions have consis-
tently higher training error, which is due to the naive choice of base learner and
the approximation of αt. However, the best test performance is also achieved
with sigmoid functions. One possible reason is that the abalone dataset is quan-
tized from a metric regression dataset, and hence contains some properties such
as smoothness of the boundaries. If we only use binary classifiers like percep-
trons, as depicted in Fig. 2(b), the boundaries would not be as smooth, and
more errors may happen. Thus, for ordinal regression datasets that are quan-
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Table 1. Test classification error of ordinal regression algorithms

data RankBoost-AE ORBoost-LR ORBoost-All SVM-EXC [3]
set perceptron sigmoid perceptron sigmoid perceptron sigmoid
pyr. 0.758±0.015 0.767±0.020 0.731±0.019 0.731±0.018 0.744±0.019 0.735±0.017 0.752±0.014
mac. 0.717±0.022 0.669±0.011 0.610±0.009 0.633±0.011 0.605±0.010 0.625±0.014 0.661±0.012
bos. 0.603±0.006 0.578±0.008 0.580±0.006 0.549±0.007 0.579±0.006 0.558±0.006 0.569±0.006
aba. 0.759±0.001 0.765±0.002 0.740±0.002 0.716±0.002 0.749±0.002 0.731±0.002 0.736±0.002
ban. 0.805±0.001 0.822±0.001 0.767±0.001 0.777±0.002 0.771±0.001 0.776±0.001 0.744±0.001
com. 0.598±0.002 0.616±0.001 0.498±0.001 0.491±0.001 0.499±0.001 0.505±0.001 0.462±0.001
cal. 0.741±0.001 0.690±0.001 0.628±0.001 0.605±0.001 0.626±0.001 0.618±0.001 0.640±0.001
cen. 0.808±0.001 0.780±0.001 0.718±0.001 0.694±0.001 0.722±0.001 0.701±0.001 0.699±0.000

(results that are within one standard error of the best are marked in bold)

Table 2. Test absolute error of ordinal regression algorithms

data RankBoost-AE ORBoost-LR ORBoost-All SVM-IMC [3]
set perceptron sigmoid perceptron sigmoid perceptron sigmoid
pyr. 1.619±0.078 1.590±0.077 1.340±0.049 1.402±0.052 1.360±0.046 1.398±0.052 1.294±0.046
mac. 1.573±0.191 1.282±0.034 0.897±0.019 0.985±0.018 0.889±0.019 0.969±0.025 0.990±0.026
bos. 0.842±0.014 0.829±0.014 0.788±0.013 0.758±0.015 0.791±0.013 0.777±0.015 0.747±0.011
aba. 1.517±0.005 1.738±0.008 1.442±0.004 1.537±0.007 1.432±0.003 1.403±0.004 1.361±0.003
ban. 1.867±0.004 2.183±0.007 1.507±0.002 1.656±0.005 1.490±0.002 1.539±0.002 1.393±0.002
com. 0.841±0.003 0.945±0.004 0.631±0.002 0.634±0.003 0.626±0.002 0.634±0.002 0.596±0.002
cal. 1.528±0.006 1.251±0.004 1.042±0.004 0.956±0.002 0.977±0.002 0.942±0.002 1.008±0.001
cen. 2.008±0.006 1.796±0.005 1.305±0.003 1.262±0.003 1.265±0.002 1.198±0.002 1.205±0.002

(results that are within one standard error of the best are marked in bold)

tized from metric regression datasets, smooth confidence functions may be more
useful than discrete binary classifiers.

We list the mean and standard errors of all test results with T = 2000 in
Tables 1 and 2. Consistent with the results on the abalone dataset, RankBoost-
AE almost always performs the worst; ORBoost-LR is better on classification
errors, and ORBoost-All is slightly better on absolute errors. When compared
with SVM-IMC on classification errors and SVM-EXC on absolute errors [3],
both ORBoost formulations have similar errors as the SVM-based algorithms.
Note, however, that ORBoost formulations with perceptrons or sigmoid functions
are much faster. On the census dataset, which contains 6000 training examples,
it takes about an hour for ORBoost to finish one trial. But SVM-based ap-
proaches, which include a time-consuming automatic parameter selection step,
need more than four days. With the comparable performance and significantly
less computational cost, ORBoost could be a useful tool for large datasets.

6 Conclusion

We proposed a thresholded ensemble model for ordinal regression, and defined
margins for the model. Novel large-margin bounds of common error functions
were proved. We studied three algorithms for obtaining thresholded ensembles.
The first algorithm, RankBoost-AE, combines RankBoost and a thresholding
algorithm. In addition, we designed two new boosting approaches, ORBoost-LR
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and ORBoost-All, which have close connections with the large-margin bounds.
ORBoost formulations are direct extensions of AdaBoost, and inherit its advan-
tage of being less venerable to overfitting.

Experimental results demonstrated that ORBoost formulations have superior
performance over RankBoost-AE. In addition, they are comparable to SVM-
based algorithms in terms of test error, but enjoy the advantage of faster train-
ing. These properties make ORBoost formulations favorable over SVM-based
algorithms on large datasets.

ORBoost formulations can be equipped with any base learners for confidence
functions. In this work, we studied the perceptrons and the normalized sigmoid
functions. Future work could be exploring other confidence functions for OR-
Boost, or extending other boosting approaches to perform ordinal regression.
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A Proof of Theorem 1

As shown in (2), we first construct a transformed binary problem. Then, the
problem is modeled by an ensemble function F (x) defined on a base space

F = H ∪ {sk}K−1
k=1 .

Here sk(X) = − sign(XD+k − 0.5) is a decision stump on dimension (D + k). It

is not hard to show that the VC-dimension of F is no more than d̂ = d + K − 1.
Without loss of generality, we normalize Gθ(x) such that

∑T
t=1 |αt|+

∑K−1
k=1 |θk|

is 1. Then, consider the associated ensemble function

F (X) =
T
∑

t=1

αtht(X) +
K−1
∑

k=1

θksk(X).

An important property for the transform is that for every (X, Y ) derived from
the tuple (x, y, k), Y F (X) = ρ̄k(x, y).

Because T contains N i.i.d. outcomes from D̂, the large-margin theorem [11,
Theorem 2] states that with probability at least 1 − δ/2 over the choice of T ,

E(x,y,k)∼D̂[Y F (X) ≤ 0] ≤

1

N

N
∑

n=1

JYnF (Xn) ≤ ∆K + O





1√
N

(

d̂ log2(N/d̂)

∆2
+ log

1

δ

)1/2


 . (9)

Since Y F (X) = ρ̄k(x, y), the left-hand-side is 1
K−1EA(Gθ,D).

Let bn = JYnF (Xn) ≤ ∆K = Jρ̄kn
(xn, yn) ≤ ∆K, which is a Boolean ran-

dom variable. An extended Chernoff bound shows that when each bn is chosen
independently, with probability at least 1 − δ/2 over the choice of bn,

1

N

N
∑

n=1

bn ≤ 1

N

N
∑

n=1

Ekn∼{1,··· ,K−1}
u
bn + O

(

1√
N

(

log
1

δ

)1/2
)

. (10)

The desired result can be obtained by combining (9) and (10), with a union
bound and Ekn∼{1,··· ,K−1}u

bn = 1
K−1EA(Gθ,Su, ∆). ut


