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Abstract

Ensemble learning algorithms such as boosting can achieve better performance by averag-
ing over the predictions of some base hypotheses. Nevertheless, most existing algorithms
are limited to combining only a finite number of hypotheses, and the generated ensemble
is usually sparse. Thus, it is not clear whether we should construct an ensemble classifier
with a larger or even an infinite number of hypotheses. In addition, constructing an infi-
nite ensemble itself is a challenging task. In this paper, we formulate an infinite ensemble
learning framework based on the support vector machine (SVM). The framework can out-
put an infinite and nonsparse ensemble through embedding infinitely many hypotheses into
an SVM kernel. We use the framework to derive two novel kernels, the stump kernel and
the perceptron kernel. The stump kernel embodies infinitely many decision stumps, and the
perceptron kernel embodies infinitely many perceptrons. We also show that the Laplacian
radial basis function kernel embodies infinitely many decision trees, and can thus be ex-
plained through infinite ensemble learning. Experimental results show that SVM with these
kernels is superior to boosting with the same base hypothesis set. In addition, SVM with
the stump kernel or the perceptron kernel performs similarly to SVM with the Gaussian
radial basis function kernel, but enjoys the benefit of faster parameter selection. These
properties make the novel kernels favorable choices in practice.
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1. Introduction

Ensemble learning algorithms, such as boosting (Freund and Schapire, 1996), are successful
in practice (Meir and Rätsch, 2003). They construct a classifier that averages over some
base hypotheses in a set H. While the size of H can be infinite, most existing algorithms
use only a finite subset of H, and the classifier is effectively a finite ensemble of hypotheses.
Some theories show that the finiteness places a restriction on the capacity of the ensemble
(Freund and Schapire, 1997), and some theories suggest that the performance of boosting
can be linked to its asymptotic behavior when the ensemble is allowed to be of an infinite
size (Rätsch et al., 2001). Thus, it is possible that an infinite ensemble is superior for
learning. Nevertheless, the possibility has not been fully explored because constructing
such an ensemble is a challenging task (Vapnik, 1998).

In this paper, we conquer the task of infinite ensemble learning, and demonstrate that
better performance can be achieved by going from finite ensembles to infinite ones. We
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formulate a framework for infinite ensemble learning based on the support vector ma-
chine (SVM) (Vapnik, 1998). The key of the framework is to embed an infinite number
of hypotheses into an SVM kernel. Such a framework can be applied both to construct
new kernels for SVM, and to interpret some existing ones (Lin, 2005). Furthermore, the
framework allows us to compare SVM and ensemble learning algorithms in a fair manner
using the same base hypothesis set.

Based on the framework, we derive two novel SVM kernels, the stump kernel and the
perceptron kernel, from an ensemble learning perspective (Lin and Li, 2005a). The stump
kernel embodies infinitely many decision stumps, and as a consequence measures the simi-
larity between examples by the `1-norm distance. The perceptron kernel embodies infinitely
many perceptrons, and works with the `2-norm distance. While there exist similar kernels
in literature, our derivation from an ensemble learning perspective is nevertheless original.
Our work not only provides a feature-space view of their theoretical properties, but also
broadens their use in practice. Experimental results show that SVM with these kernels is su-
perior to successful ensemble learning algorithms with the same base hypothesis set. These
results reveal some weakness in traditional ensemble learning algorithms, and help under-
stand both SVM and ensemble learning better. In addition, SVM with these kernels shares
similar performance to SVM with the popular Gaussian radial basis function (Gaussian-
RBF) kernel, but enjoys the benefit of faster parameter selection. These properties make
the two kernels favorable choices in practice.

We also show that the Laplacian-RBF kernel embodies infinitely many decision trees,
and hence can be viewed as an instance of the framework. Experimentally, SVM with
the Laplacian-RBF kernel performs better than ensemble learning algorithms with decision
trees. In addition, our derivation from an ensemble learning perspective helps to explain
the success of the kernel on some specific applications (Chapelle et al., 1999).

The paper is organized as follows. In Section 2, we review the connections between SVM
and ensemble learning. Next in Section 3, we propose the framework for embedding an
infinite number of hypotheses into a kernel. We then derive the stump kernel in Section 4,
the perceptron kernel in Section 5, and the Laplacian-RBF kernel in Section 6. Finally, we
show the experimental results in Section 7, and conclude in Section 8.

2. Support Vector Machine and Ensemble Learning

In this section, we first introduce the basics of SVM and ensemble learning. Then, we review
some established connections between the two in literature.

2.1 Support Vector Machine

Given a training set {(xi, yi)}N
i=1, which contains input vectors xi ∈ X ⊆ RD and their

corresponding labels yi ∈ {−1,+1}, the soft-margin SVM (Vapnik, 1998) constructs a
classifier

g(x) = sign
(
〈w, φx〉+ b

)
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from the optimal solution to the following problem:1

(P1) min
w∈F ,b∈R,ξ∈RN

1
2
〈w,w〉+ C

N∑
i=1

ξi

s.t. yi

(
〈w, φxi〉+ b

)
≥ 1− ξi, for i = 1, 2, . . . , N,

ξi ≥ 0, for i = 1, 2, . . . , N.

Here C > 0 is the regularization parameter, and φx = Φ(x) is obtained from the feature
mapping Φ: X → F . We assume the feature space F to be a Hilbert space equipped with
the inner product 〈·, ·〉 (Schölkopf and Smola, 2002). Because F can be of an infinite number
of dimensions, SVM solvers usually work on the dual problem:

(P2) min
λ∈RN

1
2

N∑
i=1

N∑
j=1

λiλjyiyjK(xi, xj)−
N∑

i=1

λi

s.t. 0 ≤ λi ≤ C, for i = 1, 2, . . . , N,

N∑
i=1

yiλi = 0.

Here K is the kernel function defined as K(x, x′) = 〈φx, φx′〉. Then, the optimal classifier
becomes

g(x) = sign

(
N∑

i=1

yiλiK(xi, x) + b

)
, (1)

where b can be computed through the primal-dual relationship (Vapnik, 1998; Schölkopf
and Smola, 2002).

The use of a kernel function K instead of computing the inner product directly in F is
called the kernel trick, which works when K(·, ·) can be computed efficiently (Schölkopf and
Smola, 2002). Alternatively, we can begin with an arbitrary K, and check whether there
exists a space-mapping pair (F ,Φ) such that K(·, ·) is a valid inner product in F . A key
tool here is the Mercer’s condition, which states that a symmetric K(·, ·) is a valid inner
product if and only if its Gram matrix K, defined by Ki,j = K(xi, xj), is always positive
semi-definite (PSD) (Vapnik, 1998; Schölkopf and Smola, 2002).

The soft-margin SVM originates from the hard-margin SVM, which forces the margin
violations ξi to be zero. When such a solution is feasible for (P1), the corresponding dual
solution can be obtained by setting C to ∞ in (P2).

2.2 Adaptive Boosting and Linear Programming Boosting

The adaptive boosting (AdaBoost) algorithm (Freund and Schapire, 1996) is perhaps the
most popular and successful approach for ensemble learning. For a given integer T and a
hypothesis set H, AdaBoost iteratively selects T hypotheses ht ∈ H and weights wt ≥ 0 to
construct an ensemble classifier

gT (x) = sign

(
T∑

t=1

wtht(x)

)
.

1. When η is nonzero, sign(η) ≡ η
|η| . We shall let sign(0) ≡ 0 to make some mathematical setup cleaner.
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The underlying algorithm for selecting ht ∈ H is called a base learner. Under some as-
sumptions (Rätsch et al., 2001), it is shown that when T → ∞, AdaBoost asymptotically
approximates an infinite ensemble classifier

g∞(x) = sign

( ∞∑
t=1

wtht(x)

)
, (2)

such that (w, h) is an optimal solution to

(P3) min
wt∈R,ht∈H

∞∑
t=1

wt

s.t. yi

( ∞∑
t=1

wtht(xi)

)
≥ 1, for i = 1, 2, . . . , N,

wt ≥ 0, for t = 1, 2, . . . ,∞.

Note that there are infinitely many variables in (P3). In order to approximate the optimal
solution well with a fixed and finite T , AdaBoost resorts to two related properties of some
of the optimal solutions for (P3): finiteness and sparsity.

• Finiteness: When two hypotheses have the same prediction patterns on the training
input vectors, they can be used interchangeably during the training time, and are
thus ambiguous. Since there are at most 2N prediction patterns on N training input
vectors, we can partition H into at most 2N groups, each of which contains mutually
ambiguous hypotheses. Some optimal solutions of (P3) only assign one or a few
nonzero weights within each group (Demiriz et al., 2002). Thus, it is possible to work
on a finite data-dependent subset of H instead of H itself without losing optimality.

• Sparsity: Minimizing the `1-norm ‖w‖1 =
∑∞

t=1 |wt| often leads to sparse solutions
(Meir and Rätsch, 2003; Rosset et al., 2007). That is, for hypotheses in the finite (but
possibly still large) subset of H, only a small number of weights needs to be nonzero.
AdaBoost can be viewed as a stepwise greedy search algorithm that approximates
such a finite and sparse ensemble (Rosset et al., 2004).

Another boosting approach, called the linear programming boosting (LPBoost), can
solve (P3) exactly. We will introduce the soft-margin LPBoost, which constructs an ensem-
ble classifier like (2) with the optimal solution to

(P4) min
wt∈R,ht∈H

∞∑
t=1

wt + C

N∑
i=1

ξi

s.t. yi

( ∞∑
t=1

wtht(xi)

)
≥ 1− ξi, for i = 1, 2, . . . , N,

ξi ≥ 0, for i = 1, 2, . . . , N,

wt ≥ 0, for t = 1, 2, . . . ,∞.
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Demiriz et al. (2002) proposed to solve (P4) with the column generating technique.2 The
algorithm works by adding one unambiguous ht to the ensemble in each iteration. Because of
the finiteness property, the algorithm is guaranteed to terminate within T ≤ 2N iterations.
The sparsity property can sometimes help speed up the convergence of the algorithm.

Rätsch et al. (2002) worked on a variant of (P4) for regression problems, and discussed
optimality conditions when H is of infinite size. Their results can be applied to (P4) as well.
In particular, they showed that even without the finiteness property (e.g., when ht outputs
real values rather than binary values), (P4) can still be solved using a finite subset of H that
is associated with nonzero weights. The results justify the use of the column generating
technique above, as well as a barrier, AdaBoost-like, approach that they proposed.

Recently, Rosset et al. (2007) studied the existence of a sparse solution when solving
a generalized form of (P4) with some H of infinite and possibly uncountable size. They
showed that under some assumptions, there exists an optimal solution of (P4) such that
at most N + 1 weights are nonzero. Thus, iterative algorithms that keep adding necessary
hypotheses ht to the ensemble, such as the proposed path-following approach (Rosset et al.,
2007) or the column generating technique (Demiriz et al., 2002; Rätsch et al., 2002), could
work by aiming towards such a sparse solution.

Note that even though the findings above indicate that it is possible to design good
algorithms to return an optimal solution when H is infinitely large, the resulting ensemble
relies on the sparsity property, and is effectively of only finite size. Nevertheless, it is not
clear whether the performance could be improved if either or both the finiteness and the
sparsity restrictions are removed.

2.3 Connecting Support Vector Machine to Ensemble Learning

The connection between AdaBoost, LPBoost, and SVM is well-known in literature (Freund
and Schapire, 1999; Rätsch et al., 2001; Rätsch et al., 2002; Demiriz et al., 2002). Consider
the feature transform

Φ(x) =
(
h1(x), h2(x), . . .

)
. (3)

We can see that the problem (P1) with this feature transform is similar to (P4). The elements
of φx in SVM are similar to the hypotheses ht(x) in AdaBoost and LPBoost. They all work
on linear combinations of these elements, though SVM deals with an additional intercept
term b. SVM minimizes the `2-norm of the weights while AdaBoost and LPBoost work on
the `1-norm. SVM and LPBoost introduce slack variables ξi and use the parameter C for
regularization, while AdaBoost relies on the choice of the parameter T (Rosset et al., 2004).
Note that AdaBoost and LPBoost require wt ≥ 0 for ensemble learning.

Several researchers developed interesting results based on the connection. For example,
Rätsch et al. (2001) proposed to select the hypotheses ht by AdaBoost and to obtain the
weights wt by solving an optimization problem similar to (P1) in order to improve the
robustness of AdaBoost. Another work by Rätsch et al. (2002) introduced a new density
estimation algorithm based on the connection. Rosset et al. (2004) applied the similarity
to compare SVM with boosting algorithms. Nevertheless, as limited as AdaBoost and
LPBoost, their results could use only a finite subset of H when constructing the feature

2. Demiriz et al. (2002) actually worked on an equivalent but slightly different formulation.
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mapping (3). One reason is that the infinite number of variables wt and constraints wt ≥ 0
are difficult to handle. We will show the remedies for these difficulties in the next section.

3. SVM-Based Framework for Infinite Ensemble Learning

Vapnik (1998) proposed a challenging task of designing an algorithm that actually generates
an infinite ensemble classifier, that is, an ensemble classifier with infinitely many nonzero wt.
Traditional algorithms like AdaBoost or LPBoost cannot be directly generalized to solve
the task, because they select the hypotheses in an iterative manner, and only run for a finite
number of iterations.

We solved the challenge via another route: the connection between SVM and ensemble
learning. The connection allows us to formulate a kernel that embodies all the hypotheses
in H. Then, the classifier (1) obtained from SVM with the kernel is a linear combination
over H (with an intercept term). Nevertheless, there are still two main obstacles. One is to
actually derive the kernel, and the other is to handle the constraints wt ≥ 0 to make (1) an
ensemble classifier. In this section, we combine several ideas to deal with these obstacles,
and conquer Vapnik’s task with a novel SVM-based framework for infinite ensemble learning.

3.1 Embedding Hypotheses into the Kernel

We start by embedding the infinite number of hypotheses in H into an SVM kernel. We
have shown in (3) that we could construct a feature mapping from H. The idea is extended
to a more general form for deriving a kernel in Definition 1.

Definition 1 Assume that H = {hα : α ∈ C}, where C is a measure space. The kernel that
embodies H is defined as

KH,r(x, x′) =
∫
C
φx(α)φx′(α) dα, (4)

where φx(α) = r(α)hα(x), and r : C → R+ is chosen such that the integral exists for
all x, x′ ∈ X .

Here α is the parameter of the hypothesis hα. Although two hypotheses with different α
values may have the same input-output relation, we would treat them as different objects in
our framework. We shall denote KH,r by KH when r is clear from the context. The validity
of the definition is formalized in the following theorem.

Theorem 2 Consider the kernel KH in Definition 1.

1. The kernel is an inner product for φx and φx′ in the Hilbert space F = L2(C), which
contains functions ϕ(·) : C → R that are square integrable.

2. For a set of input vectors {xi}N
i=1 ∈ XN , the Gram matrix of KH is PSD.

Proof The first part is known in mathematical analysis (Reed and Simon, 1980), and the
second part follows Mercer’s condition.
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Constructing kernels from an integral inner product is a known technique in litera-
ture (Schölkopf and Smola, 2002). The framework adopts this technique for embedding the
hypotheses, and thus could handle the situation even when H is uncountable. Note that
when r2(α) dα is a “prior” on hα, the kernel KH,r(x, x′) can be interpreted as a covariance
function commonly used in Gaussian process (GP) models (Williams, 1998; Rasmussen and
Williams, 2006). Some Bayesian explanations can then be derived from the connection
between SVM and GP, but are beyond the scope of this paper.

3.2 Negation Completeness and Constant Hypotheses

When we use KH in (P2), the primal problem (P1) becomes

(P5) min
w∈L2(C),b∈R,ξ∈RN

1
2

∫
C
w2(α) dα + C

N∑
i=1

ξi

s.t. yi

(∫
C
w(α)r(α)hα(xi) dα + b

)
≥ 1− ξi, for i = 1, 2, . . . , N,

ξi ≥ 0, for i = 1, 2, . . . , N.

In particular, the classifier obtained after solving (P2) with KH is the same as the classifier
obtained after solving (P5):

g(x) = sign
(∫

C
w(α)r(α)hα(x) dα + b

)
. (5)

When C is uncountable, it is possible that each hypothesis hα only takes an infinitesimal
weight

(
w(α)r(α) dα

)
in the ensemble. Thus, the classifier (5) is very different from those

obtained with traditional ensemble learning, and will be discussed further in Subsection 4.2.
Note that the classifier (5) is not an ensemble classifier yet, because we do not have the

constraints w(α) ≥ 0, and we have an additional term b. Next, we would explain that such
a classifier is equivalent to an ensemble classifier under some reasonable assumptions.

We start from the constraints w(α) ≥ 0, which cannot be directly considered in (P1).
Vapnik (1998) showed that even if we add a countably infinite number of constraints to (P1),
infinitely many variables and constraints would be introduced to (P2). Then, the latter
problem would still be difficult to solve.

One remedy is to assume that H is negation complete, that is,3

h ∈ H ⇔ (−h) ∈ H.

Then, every linear combination over H has an equivalent linear combination with only
nonnegative weights. Negation completeness is usually a mild assumption for a reasonableH
(Rätsch et al., 2002). Following this assumption, the classifier (5) can be interpreted as an
ensemble classifier over H with an intercept term b. Somehow b can be viewed as the weight
on a constant hypothesis c, which always predicts c(x) = 1 for all x ∈ X . We shall further
add a mild assumption that H contains both c and (−c). Then, the classifier (5) or (1) is
indeed equivalent to an ensemble classifier.

3. We use (−h) to denote the function (−h)(·) = −(h(·)).
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1. Consider a training set {(xi, yi)}N
i=1 and the hypothesis set H, which is assumed to be

negation complete and to contain a constant hypothesis.

2. Construct a kernel KH according to Definition 1 with a proper embedding function r.

3. Choose proper parameters, such as the soft-margin parameter C.

4. Solve (P2) with KH and obtain Lagrange multipliers λi and the intercept term b.

5. Output the classifier

g(x) = sign

(
N∑

i=1

yiλiKH(xi, x) + b

)
,

which is equivalent to some ensemble classifier over H.

Algorithm 1: SVM-based framework for infinite ensemble learning

We summarize our framework in Algorithm 1. The framework shall generally inherit
the profound performance of SVM. Most of the steps in the framework can be done by
existing SVM implementations, and the hard part is mostly in obtaining the kernel KH. In
the next sections, we derive some concrete instances using different base hypothesis sets.

4. Stump Kernel

In this section, we present the stump kernel, which embodies infinitely many decision
stumps. The decision stump sq,d,α(x) = q · sign

(
(x)d − α

)
works on the d-th element of x,

and classifies x according to q ∈ {−1,+1} and the threshold α (Holte, 1993). It is widely
used for ensemble learning because of its simplicity (Freund and Schapire, 1996).

4.1 Formulation and Properties

To construct the stump kernel, we consider the following set of decision stumps

S =
{
sq,d,αd

: q ∈ {−1,+1} , d ∈ {1, . . . , D} , αd ∈ [Ld, Rd]
}
.

We also assume X ⊆ (L1, R1) × (L2, R2) × · · · × (LD, RD). Thus, the set S is negation
complete and contains s+1,1,L1 as a constant hypothesis. The stump kernel KS defined
below can then be used in Algorithm 1 to obtain an infinite ensemble of decision stumps.

Definition 3 The stump kernel is KS with r(q, d, αd) = rS = 1
2 ,

KS(x, x′) = ∆S −
D∑

d=1

∣∣(x)d − (x′)d

∣∣ = ∆S −
∥∥x− x′

∥∥
1
,

where ∆S = 1
2

∑D
d=1(Rd − Ld) is a constant.
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Definition 3 is a concrete instance that follows Definition 1. The details of the derivation
are shown in Appendix A. As we shall see further in Section 5, scaling rS is equivalent to
scaling the parameter C in SVM. Thus, without loss of generality, we use rS = 1

2 to obtain
a cosmetically cleaner kernel function.

The validity of the stump kernel follows directly from Theorem 2 of the general frame-
work. That is, the stump kernel is an inner product in a Hilbert space of some square
integrable functions ϕ(q, d, αd), and it produces a PSD Gram matrix for any set of input
vectors {xi}N

i=1 ∈ XN . Given the ranges (Ld, Rd), the stump kernel is very simple to com-
pute. Furthermore, the ranges are not even necessary in general, because dropping the
constant ∆S does not affect the classifier obtained from SVM.

Theorem 4 Solving (P2) with the stump kernel KS is the same as solving (P2) with the
simplified stump kernel K̃S(x, x′) = −‖x− x′‖1. That is, equivalent classifiers can be ob-
tained from (1).

Proof We extend from the results of Berg et al. (1984) to show that K̃S(x, x′) is con-
ditionally PSD (CPSD). In addition, because of the constraint

∑N
i=1 yiλi = 0, a CPSD

kernel K̃(x, x′) works exactly the same for (P2) as any PSD kernel of the form K̃(x, x′)+∆,
where ∆ is a constant (Schölkopf and Smola, 2002). The proof follows with ∆ = ∆S .

In fact, a kernel K̂(x, x′) = K̃(x, x′) + f(x) + f(x′) with any mapping f is equivalent
to K̃(x, x′) for (P2) because of the constraint

∑N
i=1 yiλi = 0. Now consider another kernel

K̂S(x, x′) = K̃S(x, x′) +
D∑

d=1

(x)d +
D∑

d=1

(x′)d = 2
D∑

d=1

min((x)d, (x′)d).

We see that K̂S , K̃S , and KS are equivalent for (P2). The former is called the histogram in-
tersection kernel (up to a scale of 2) when the elements (x)d represent generalized histogram
counts, and has been successfully used in image recognition applications (Barla et al., 2003;
Boughorbel et al., 2005; Grauman and Darrell, 2005). The equivalence demonstrates the
usefulness of the stump kernel on histogram-based features, which would be further dis-
cussed in Subsection 6.4. A remark here is that our proof for the PSD-ness of KS comes
directly from the framework, and hence is simpler and more straightforward than the proof
of Boughorbel et al. (2005) for the PSD-ness of K̂S .

The simplified stump kernel is simple to compute, yet useful in the sense of dichotomizing
the training set, which comes from the following positive definite (PD) property.

Theorem 5 (Lin, 2005) Consider training input vectors {xi}N
i=1 ∈ XN . If there exists a

dimension d such that (xi)d 6= (xj)d for all i 6= j, the Gram matrix of KS is PD.

The PD-ness of the Gram matrix is directly connected to the classification capacity of
the SVM classifiers. Chang and Lin (2001b) showed that when the Gram matrix of the
kernel is PD, a hard-margin SVM with such a kernel can always dichotomize the training
set perfectly. Keerthi and Lin (2003) then applied the result to show that SVM with the
popular Gaussian-RBF kernel K(x, x′) = exp

(
−γ ‖x− x′‖2

2

)
can always dichotomize the

training set when C →∞. We obtain a similar theorem for the stump kernel.
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-

6

d
dt
t

Figure 1: The XOR data set

Theorem 6 Under the assumption of Theorem 5, there exists some C∗ > 0 such that for
all C ≥ C∗, SVM with KS can always dichotomize the training set {(xi, yi)}N

i=1.

We make two remarks here. First, although the assumption of Theorem 6 is mild in
practice, there are still some data sets that do not have this property. An example is the
famous XOR data set (Figure 1). We can see that every possible decision stump makes 50%
of errors on the training input vectors. Thus, AdaBoost and LPBoost would terminate with
one bad decision stump in the ensemble. Similarly, SVM with the stump kernel cannot
dichotomize this training set perfectly, regardless of the choice of C. Such a problem is
inherent in any ensemble model that combines decision stumps, because the model belongs
to the family of generalized additive models (Hastie and Tibshirani, 1990; Hastie et al.,
2001), and hence cannot approximate non-additive target functions well.

Second, although Theorem 6 indicates how the stump kernel can be used to dichotomize
the training set perfectly, the classifier obtained usually overfits to noise (Keerthi and Lin,
2003). For the Gaussian-RBF kernel, it has been known that SVM with reasonable param-
eter selection provides suitable regularization and achieves good generalization performance
even in the presence of noise (Keerthi and Lin, 2003; Hsu et al., 2003). We observe similar
experimental results for the stump kernel (see Section 7).

4.2 Averaging Ambiguous Stumps

We have discussed in Subsection 2.2 that the set of hypotheses can be partitioned into
groups and traditional ensemble learning algorithms can only pick a few representatives
within each group. Our framework acts in a different way: the `2-norm objective function
of SVM leads to an optimal solution that combines all the predictions within each group.
This property is formalized in the following theorem.

Theorem 7 Consider two ambiguous hα, hβ ∈ H. If the kernel KH is used in Algorithm 1,
the optimal w of (P5) satisfies w(α)

r(α) = w(β)
r(β) .

Proof The optimality condition between (P1) and (P2) leads to

w(α)
r(α)

=
N∑

i=1

λihα(xi) =
N∑

i=1

λihβ(xi) =
w(β)
r(β)

.

If w(α) is nonzero, w(β) would also be nonzero, which means both hα and hβ are included
in the ensemble. As a consequence, for each group of mutually ambiguous hypotheses, our
framework considers the average prediction of all hypotheses as the consensus output.
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The averaging process constructs a smooth representative for each group. In the fol-
lowing theorem, we demonstrate this behavior with the stump kernel, and show how the
decision stumps group together in the final ensemble classifier.

Theorem 8 Define (x̃)d,a as the a-th smallest value in {(xi)d}N
i=1, and Ad as the number

of different (x̃)d,a. Let (x̃)d,0 = Ld, (x̃)d,(Ad+1) = Rd, and

ŝq,d,a(x) = q ·


+1, when (x)d ≥ (x̃)d,a+1;
−1, when (x)d ≤ (x̃)d,a;
2(x)d−(x̃)d,a−(x̃)d,a+1

(x̃)d,a+1−(x̃)d,a
, otherwise.

Then, for r̂(q, d, a) = 1
2

√
(x̃)d,a+1 − (x̃)d,a,

KS(xi, x) =
∑

q∈{−1,+1}

D∑
d=1

Ad∑
a=0

r̂2(q, d, a)ŝq,d,a(xi)ŝq,d,a(x).

Proof First, for any fixed q and d, a simple integration shows that∫ (x̃)d,a+1

(x̃)d,a

sq,d,α(x) dα =
(
(x̃)d,a+1 − (x̃)d,a

)
ŝq,d,a(x).

In addition, note that for all α ∈
(
(x̃)d,a, (x̃)d,a+1

)
, ŝq,d,a(xi) = sq,d,α(xi). Thus,

∫ Rd

Ld

(
r(q, d, α)sq,d,α(xi)

)(
r(q, d, α)sq,d,α(x)

)
dα

=
Ad∑
a=0

∫ (x̃)d,a+1

(x̃)d,a

(
1
2
sq,d,α(xi)

)(
1
2
sq,d,α(x)

)
dα

=
Ad∑
a=0

1
4
ŝq,d,a(xi)

∫ (x̃)d,a+1

(x̃)d,a

sq,d,α(x) dα

=
Ad∑
a=0

1
4

(
(x̃)d,a+1 − (x̃)d,a

)
ŝq,d,a(xi)ŝq,d,a(x).

The theorem can be proved by summing over all q and d.

As shown in Figure 2, the function ŝq,d,a is a smoother variant of the decision stump.
Theorem 8 indicates that the infinite ensemble of decision stumps produced by our frame-
work is equivalent to a finite ensemble of data-dependent and smoother variants. Another
view of ŝq,d,a is that they are continuous piecewise linear functions (order-2 splines) with
knots defined on the training features (Hastie et al., 2001). Then, Theorem 8 indicates that
an infinite ensemble of decision stumps can be obtained by fitting an additive model of finite
size using these special splines as the bases. Note that although the fitting problem is of
finite size, the number of possible splines can grow as large as O(ND), which can sometimes
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-
x̃d,a x̃d,a+1

sq,d,αd
(x)

(a) a group of ambiguous decision stumps sq,d,αd with αd ∈
`
(x̃)d,a, (x̃)d,a+1

´
-

x̃d,a x̃d,a+1
�

�
�

�
�

�
ŝq,d,a(x)

(b) SVM-based infinite ensemble learning uses the consensus: the averaged stump ŝq,d,a

-
x̃d,a x̃d,a+1

mq,d,a(x)

(c) Base learners for AdaBoost and LPBoost usually only consider the middle stump mq,d,a

Figure 2: The averaged stump and the middle stump

be too large for iterative algorithms such as backfitting (Hastie et al., 2001). On the other
hand, our SVM-based framework with the stump kernel can be thought as a route to solve
this special spline fitting problem efficiently via the kernel trick.

As shown in the proof of Theorem 8, the averaged stump ŝq,d,a represents the group of

ambiguous decision stumps with αd ∈
(
(x̃)d,a, (x̃)d,a+1

)
. When the group is larger, ŝq,d,a

becomes smoother. Traditional ensemble learning algorithms like AdaBoost or LPBoost
rely on a base learner to choose one decision stump as the only representative within each
group, and the base learner usually returns the middle stump mq,d,a. As shown in Figure 2,
the threshold of the middle stump is at the mean of (x̃)d,a and (x̃)d,a+1. Our framework,
on the other hand, enjoys a smoother decision by averaging over more decision stumps.
Even though each decision stump only has an infinitesimal hypothesis weight, the averaged
stump ŝq,d,a has a concrete weight in the ensemble.

5. Perceptron Kernel

In this section, we extend the stump kernel to the perceptron kernel, which embodies
infinitely many perceptrons. A perceptron is a linear threshold classifier of the form

pθ,α(x) = sign
(
θT x− α

)
.

It is a basic theoretical model for a neuron, and is very important for building neural
networks (Haykin, 1999).

To construct the perceptron kernel, we consider the following set of perceptrons

P =
{
pθ,α : θ ∈ RD, ‖θ‖2 = 1, α ∈ [−R,R]

}
.

We assume that X is within the interior of B(R), where B(R) is a ball of radius R centered
at the origin in RD. Then, the set P is negation complete, and contains a constant hypoth-
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esis pe1,−R where e1 = (1, 0, . . . , 0)T . Thus, the perceptron kernel KP defined below can be
used in Algorithm 1 to obtain an infinite ensemble of perceptrons.

Definition 9 Let

ΘD =
∫
‖θ‖2=1

dθ, ΞD =
∫
‖θ‖2=1

∣∣cos (angle〈θ, e1〉)
∣∣ dθ,

where the operator angle〈·, ·〉 is the angle between two vectors, and the integrals are cal-
culated with uniform measure on the surface ‖θ‖2 = 1. The perceptron kernel is KP
with r(θ, α) = rP ,

KP(x, x′) = ∆P −
∥∥x− x′

∥∥
2
,

where the constants rP = (2ΞD)−
1
2 and ∆P = ΘDΞ−1

D R.

The details are shown in Appendix A. With the perceptron kernel, we can construct
an infinite ensemble of perceptrons. Such an ensemble is equivalent to a neural network
with one hidden layer, infinitely many hidden neurons, and the hard-threshold activation
functions. Williams (1998) built an infinite neural network with either the sigmoidal or
the Gaussian activation function through computing the corresponding covariance function
for GP models. Analogously, our approach returns an infinite neural network with hard-
threshold activation functions (ensemble of perceptrons) through computing the perceptron
kernel for SVM. Williams (1998) mentioned that “Paradoxically, it may be easier to carry
out Bayesian prediction with infinite networks rather than finite ones.” Similar claims can
be made with ensemble learning.

The perceptron kernel shares many similar properties to the stump kernel. First, the
constant ∆P can also be dropped, as formalized below.

Theorem 10 Solving (P2) with the simplified perceptron kernel K̃P(x, x′) = −‖x− x′‖2 is
the same as solving (P2) with KP(x, x′).

Second, SVM with the perceptron kernel can also dichotomize the training set perfectly,
which comes from the usefulness of the simplified perceptron kernel K̃P in interpolation.

Theorem 11 (Micchelli, 1986) Consider input vectors {xi}N
i=1 ∈ XN , and the perceptron

kernel KP in Definition 9. If xi 6= xj for all i 6= j, then the Gram matrix of KP is PD.

Then, similar to Theorem 6, we get the following result.

Theorem 12 If xi 6= xj for all i 6= j, there exists some C∗ > 0 such that for all C ≥ C∗,
SVM with KP can always dichotomize the training set {(xi, yi)}N

i=1.

Another important property, called scale-invariance, accompanies the simplified percep-
tron kernel, which was also named the triangular kernel by Fleuret and Sahbi (2003). They
proved that when the kernel is used in the hard-margin SVM, scaling all training input
vectors xi by some positive γ does not change the optimal solution.

In fact, in the soft-margin SVM, a well-known result is that scaling the Gram matrix K
by some γ > 0 is equivalent to scaling C by γ in (P2). Because the simplified perceptron
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kernel K̃P satisfies γK̃P(x, x′) = K̃P(γx, γx′), the effect of scaling training examples can be
equivalently performed with the parameter selection step on C. That is, when C is selected
reasonably, there is no need to explicitly have a scaling parameter γ.

Recall that we construct the perceptron kernel (and the stump kernel) with an embed-
ding constant rP (and rS), and from Definition 1, multiplying the constant by

√
γ > 0 is

equivalent to scaling the Gram matrix K by γ. Thus, when C is selected reasonably, there
is also no need to explicitly try different rP or rS for these two kernels. We will further
discuss the benefits of this property in Subsection 6.4.

6. Laplacian-RBF Kernel

In the previous sections, we applied Definition 1 on some simple base hypothesis sets. Next,
we show how complex hypothesis sets can also be embedded in a kernel by suitably combin-
ing the kernels that embody simpler sets. We will introduce two useful tools: summation
and multiplication. The tools would eventually allow us to embed infinitely many deci-
sion trees in a kernel. Interestingly, the kernel obtained is equivalent to the well-known
Laplacian-RBF kernel in some parameters.

6.1 Summation: Embedding Multiple Sets of Hypotheses

Summation can be used to embed multiple sets of hypotheses altogether. For example,
given kernels KH1 and KH2 , their summation

K(x, x′) = KH1(x, x′) +KH2(x, x′)

embodies bothH1 andH2. In other words, if we use K(x, x′) in Algorithm 1, we could obtain
an ensemble classifier over H1 ∪ H2 when the union is negation complete and contains a
constant hypothesis.

In traditional ensemble learning, when multiple sets of hypotheses are considered alto-
gether, it is usually necessary to call a base learner for each set. On the other hand, our
framework only requires a simple summation on the kernel evaluations. In fact, as shown
in the next theorem, our framework can be applied to work with any countable sets of
hypotheses, which may not be an easy task for traditional ensemble learning algorithms.

Theorem 13 Assume that the kernels KH1, . . . , KHJ
are defined for some J ∈ N

⋃
{∞}

with sets of hypotheses H1, . . . , HJ , respectively. Then, let

K(x, x′) =
J∑

j=1

KHj (x, x′).

If K(x, x′) exists for all x, x′ ∈ X , and H =
⋃J

j=1Hj is negation complete and contains a
constant hypothesis, Algorithm 1 using K(x, x′) outputs an ensemble classifier over H.

Proof The theorem comes from the following result in mathematical analysis: any count-
able direct sum over Hilbert spaces is a Hilbert space (Reed and Simon, 1980, Example 5).
Lin (2005, Theorem 6) showed the details of the proof.
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A remark on Theorem 13 is that we do not intend to define a kernel with H directly.
Otherwise we need to choose suitable C and r first, which may not be an easy task for such
a complex hypothesis set. Using the summation of the kernels, on the other hand, allow us
to obtain an ensemble classifier over the full union with less efforts.

6.2 Multiplication: Performing Logical Combination of Hypotheses

It is known that we can combine two kernels by point-wise multiplication to form a new ker-
nel (Schölkopf and Smola, 2002). When the two kernels are associated with base hypothesis
sets, a natural question is: what hypothesis set is embedded in the new kernel?

Next, let output +1 represent logic TRUE and −1 represent logic FALSE. We show that
multiplication can be used to perform common logical combinations on the hypotheses.

Theorem 14 For two sets of hypotheses H1 = {hα : α ∈ C1} and H2 = {hβ : β ∈ C2}, define

H = {hα,β : hα,β(x) = −hα(x) · hβ(x), α ∈ C1, β ∈ C2} .

In addition, let r(α, β) = r1(α)r2(β). Then,

KH,r(x, x′) = KH1,r1(x, x′) · KH2,r2(x, x′)

for all x, x′ ∈ X .

The proof simply follows from Definition 1. Note that when representing logic, the combined
hypothesis hα,β is the XOR operation on hα and hβ. More complicated results about other
operations can be introduced under a mild assumption called neutrality.

Definition 15 A set of hypothesis H = {hα : α ∈ C} is neutral to X with a given r if and
only if for all x ∈ X ,

∫
α∈C hα(x)r2(α) dα = 0.

Note that for a negation complete set H, neutrality is usually a mild assumption (e.g.,
by assigning the same r for hα and −hα). We can easily verify that the set of decision
stumps in Definition 3 and the set of perceptrons in Definition 9 are both neutral.

Theorem 16 For two sets of hypotheses H1 = {hα : α ∈ C1} and H2 = {hβ : β ∈ C2}, define

H =
{
hq,α,β : hq,α,β(x) = q ·min

(
hα(x), hβ(x)

)
, α ∈ C1, β ∈ C2, q ∈ {−1,+1}

}
.

Assume that H1 and H2 are neutral with r1 and r2, respectively, and both integrals

∆1 =
∫

α∈C1
r2
1(α) dα, ∆2 =

∫
β∈C2

r2
2(β) dβ

are finite. In addition, let r(q, α, β) =
√

2r1(α)r2(β). Then,

KH,r(x, x′) =
(
KH1,r1(x, x′) + ∆1

)
·
(
KH2,r2(x, x′) + ∆2

)
for all x, x′ ∈ X . Furthermore, H is neutral to X with r.
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Proof Because hα(x), hβ(x) ∈ {−1,+1},

h+1,α,β(x) =
1
2
(
hα(x)hβ(x) + hα(x) + hβ(x)− 1

)
.

Then,

KH,r(x, x′)

= 2
∫

h+1,α,β(x)h+1,α,β(x′)r2(α, β) dβ dα

=
1
2

∫ (
hα(x)hβ(x) + hα(x) + hβ(x)− 1

)(
hα(x′)hβ(x′) + hα(x′) + hβ(x′)− 1

)
r2(α, β) dβ dα

=
∫ (

hα(x)hβ(x)hα(x′)hβ(x′) + hα(x)hα(x′) + hβ(x)hβ(x′) + 1
)
r2
1(α)r2

2(β) dβ dα (6)

=
(
KH1,r1(x, x′) + ∆1

)
·
(
KH2,r2(x, x′) + ∆2

)
.

Note that (6) comes from the neutrality assumption, which implies that during integration,
the cross-terms like ∫

hα(x)hβ(x′)r2
1(α)r2

2(β) dα dβ

are all 0. Neutrality of H follows from the symmetry in q.

The arithmetic operation (+1·min) is equivalent to the AND operation when the outputs
represent logic, and hence (−1 · min) represents the NAND operation. If H1 and H2 are
negation complete, the NOT operation is implicit in the original sets, and hence OR can
be equivalently performed through OR(a, b) = NAND(NOT(a),NOT(b)).

6.3 Stump Region Kernel, Decision Tree Kernel, and Laplacian-RBF Kernel

Next, we use the stump kernel to demonstrate the usefulness of summation and multi-
plication. When H1 = H2 = S, the resulting KH from Theorem 16 embodies AND/OR
combinations of two decision stumps in S. Extending this concept, we get the following
new kernels.

Definition 17 The L-level stump region kernel KTL
is recursively defined by

KT1(x, x′) = KS(x, x′) + ∆S , ∆1 = 2∆S ,

KTL+1
(x, x′) =

(
KTL

(x, x′) + ∆L

) (
KS(x, x′) + ∆S

)
, ∆L+1 = 2∆L∆S for L ∈ N.

If we construct a kernel from {c,−c} with r =
√

1
2∆S on each hypothesis, we can see that

the constant ∆S is also a neutral kernel. Since neutrality is preserved by summation, the
kernel KT1 is neutral as well. By repeatedly applying Theorem 16 and maintaining ∆L as the
constant associated with TL, we see that KTL

embodies all possible AND/OR combinations
of L decision stumps in S. We call these hypotheses the L-level stump regions.

Note that we can solve the recurrence and get

KTL
(x, x′) = 2L∆L

S

L∑
`=1

(
KS(x, x′) + ∆S

2∆S

)`

, for L ∈ N.
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Then, by applying Theorem 13, we obtain an ensemble classifier over stump regions of any
level.

Theorem 18 For 0 < γ < 1
∆S

, the infinite stump region (decision tree) kernel

KT (x, x′) = exp
(
γ ·
(
KS(x, x′) + ∆S

))
− 1

can be applied to Algorithm 1 to obtain an ensemble classifier over T =
⋃∞

L=1 TL.

Proof By Taylor’s series expansion of exp(ε) near ε = 0, we get

KT (x, x′) =
∞∑

L=1

γL

L!
(
KS(x, x′) + ∆S

)L
= γKT1(x, x′) +

∞∑
L=2

γL

L!
(
KTL

(x, x′)− 2∆SKTL−1
(x, x′)

)
=

∞∑
L=1

γL

L!
KTL

(x, x′)−
∞∑

L=1

γL+1

(L + 1)!
2∆SKTL

(x, x′)

=
∞∑

L=1

(
γL

L!
− γL+12∆S

(L + 1)!

)
KTL

(x, x′).

Note that τL = γL

L! −
γL+12∆S
(L+1)! > 0 for all L ≥ 1 if and only if 0 < γ < 1

∆S
. The desired

result simply follows Theorem 13 by scaling the r functions of each KTL
by

√
τL.

The set of stump regions of any level contains all AND/OR combinations of decision
stumps. It is not hard to see that every stump region can be represented by recursive
axis-parallel partitions that output {−1,+1}, that is, a decision tree (Quinlan, 1986; Hastie
et al., 2001). In addition, we can view the nodes of a decision tree as logic operations:

tree

= OR(AND(root node condition, left),AND(NOT(root node condition), right)).

By recursively replacing each root node condition with a decision stump, we see that every
decision tree can be represented as a stump region hypothesis. Thus, the set T that contains
stump regions of any level is the same as the set of all possible decision trees, which leads
to the name decision tree kernel.4

Decision trees are popular for ensemble learning, but traditional algorithms can only
deal with trees of finite levels (Breiman, 1999; Dietterich, 2000). On the other hand, when
the decision tree kernel KT is plugged into our framework, it allows us to actually build an
infinite ensemble over decision trees of arbitrary levels.

4. We use the name decision tree kernel for KT in Theorem 18 because the kernel embodies an infinite
number of decision tree “hypotheses” and can be used in our framework to construct an infinite ensemble
of decision trees. As pointed out by a reviewer, however, the kernel is derived in a particular way, which
makes the metric of the underlying feature space different from the metrics associated with common
decision tree “algorithms.”

301



Lin and Li

Note that the decision tree kernel KT (x, x′) is of the form

κ1 exp
(
−κ2

∥∥x− x′
∥∥

1

)
+ κ3

where κ1, κ2, κ3 are constants and κ1, κ2 are positive. We mentioned in Section 4 that
scaling the kernel with κ1 is equivalent to scaling the soft-margin parameter C in SVM,
and in Theorem 4 that dropping κ3 does not affect the solution obtained from SVM. Then,
the kernel KT (x, x′) is similar to the Laplacian-RBF kernel KL(x, x′) = exp (−γ ‖x− x′‖1).
This result is a novel interpretation of the Laplacian-RBF kernel: under suitable parameters,
SVM with the Laplacian-RBF kernel allows us to obtain an infinite ensemble classifier over
decision trees of any level.5

Not surprisingly, when all training input vectors xi are distinct (Micchelli, 1986; Baxter,
1991), the Gram matrix of KL (and hence KT ) is PD. Then, the Laplacian-RBF kernel and
the decision tree kernel could be used to dichotomize the training set perfectly.

6.4 Discussion on Radial Basis Function Kernels

Note that the stump kernel, the perceptron kernel, the Laplacian-RBF kernel, and the
Gaussian-RBF kernel are all radial basis functions. They can all be used to dichotomize the
training set perfectly under mild conditions, while the first three connect to explanations
from an ensemble perspective. Next, we compare two properties of these kernels, and discuss
their use in SVM applications.

First, we can group these kernels by the distance metrics they use. The stump kernel
and the Laplacian-RBF kernel deal with the `1-norm distance between input vectors, while
the others work on the `2-norm distance. An interesting property of using the `2-norm
distance is the invariance to rotations. From the construction of the perceptron kernel,
we can see how the rotation invariance is obtained from an ensemble point-of-view. The
transformation vectors θ in perceptrons represent the rotation, and rotation invariance
comes from embedding all possible θ uniformly in the kernel.

Some applications, however, may not desire rotation invariance. For example, when
representing an image with color histograms, rotation could mix up the information in each
color component. Chapelle et al. (1999) showed some successful results with the Laplacian-
RBF kernel on this application. In Subsection 4.1, we have also discussed some image
recognition applications using the histogram intersection kernel, which is equivalent to the
stump kernel, on histogram-based features. Gene expression analysis, as demonstrated by
Lin and Li (2005b), is another area that the stump kernel could be helpful.

Second, we can group kernels by whether they are scale-invariant (see also Section 5).
The simplified stump kernel and the simplified perceptron kernel are scale-invariant, which
means that C is the only parameter that needs to be determined. On the other hand,
different combinations of (γ, C) need to be considered for the Gaussian-RBF kernel or
the Laplacian-RBF kernel during parameter selection (Keerthi and Lin, 2003). Thus, SVM
with the simplified stump kernel or the simplified perceptron kernel enjoys an advantage
on speed during parameter selection. As we will see in Section 7.2, experimentally they

5. Note that the techniques in Theorem 18 can be coupled with Theorem 14 to show that Laplacian-RBF
kernel with any γ > 0 embodies XOR stump regions (a special type of decision tree) of any level. We
emphasize on the AND-OR stump regions here to connect better to general decision trees.
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perform similarly to the Gaussian-RBF kernel on many data sets. Thus, SVM applications
that consider speed as an important factor may benefit from using the simplified stump
kernel or the simplified perceptron kernel.

7. Experiments

We first compare our SVM-based infinite ensemble learning framework with AdaBoost
and LPBoost using decision stumps, perceptrons, or decision trees as the base hypothesis set.
The simplified stump kernel (SVM-Stump), the simplified perceptron kernel (SVM-Perc),
and the Laplacian-RBF kernel (SVM-Dec) are plugged into Algorithm 1 respectively. We
also compare SVM-Stump, SVM-Perc, and SVM-Dec with SVM-Gauss, which is SVM with
the Gaussian-RBF kernel.

The deterministic decision stump algorithm (Holte, 1993), the random coordinate de-
scent perceptron algorithm (Li and Lin, 2007), and the C4.5 decision tree algorithm (Quin-
lan, 1986) are taken as base learners in AdaBoost and LPBoost for the corresponding base
hypothesis set. For perceptrons, we use the RCD-bias setting with 200 epochs of training;
for decision trees, we take the pruned tree with the default settings of C4.5. All base learn-
ers above have been shown to work reasonably well with boosting in literature (Freund and
Schapire, 1996; Li and Lin, 2007).

We discussed in Subsection 4.2 that a common implementation of AdaBoost-Stump and
LPBoost-Stump only chooses the middle stumps. For further comparison, we include all the
middle stumps in a set M, and construct a kernel KM with r = 1

2 according to Definition 1.
Because M is a finite set, the integral in (4) becomes a summation when computed with
the counting measure. We test our framework with this kernel, and call it SVM-Mid.

LIBSVM 2.8 (Chang and Lin, 2001a) is adopted as the soft-margin SVM solver, with
a suggested procedure that selects a suitable parameter with a five-fold cross validation
on the training set (Hsu et al., 2003). For SVM-Stump, SVM-Mid, and SVM-Perc, the
parameter log2 C is searched within {−17,−15, . . . , 3}, and for SVM-Dec and SVM-Gauss,
the parameters (log2 γ, log2 C) are searched within {−15,−13, . . . , 3} × {−5,−3, . . . , 15}.
We use different search ranges for log2 C because the numerical ranges of the kernels could
be quite different. After the parameter selection procedure, a new model is trained using
the whole training set, and the generalization ability is evaluated on an unseen test set.

For boosting algorithms, we conduct the parameter selection procedure similarly. The
parameter log2 C of LPBoost is also searched within {−17,−15, . . . , 3}. For AdaBoost,
the parameter T is searched within {10, 20, . . . , 1500}. Note that because LPBoost can be
slow when the ensemble size is too large (Demiriz et al., 2002), we set a stopping criterion
to generate at most 1000 columns (hypotheses) in order to obtain an ensemble within a
reasonable amount of time.

The three artificial data sets from Breiman (1999) (twonorm, threenorm, and ringnorm)
are generated with training set size 300 and test set size 3000. We create three more
data sets (twonorm-n, threenorm-n, ringnorm-n), which contain mislabeling noise on 10%
of the training examples, to test the performance of the algorithms on noisy data. We
also use eight real-world data sets from the UCI repository (Hettich et al., 1998): australian,
breast, german, heart, ionosphere, pima, sonar, and votes84. Their feature elements are scaled
to [−1, 1]. We randomly pick 60% of the examples for training, and the rest for testing.

303



Lin and Li

data set
number of number of number of

training examples test examples features
twonorm 300 3000 20
twonorm-n 300 3000 20
threenorm 300 3000 20
threenorm-n 300 3000 20
ringnnorm 300 3000 20
ringnorm-n 300 3000 20
australian 414 276 14
breast 409 274 10
german 600 400 24
heart 162 108 13
ionosphere 210 141 34
pima 460 308 8
sonar 124 84 60
votes84 261 174 16
a1a 1605 30956 123
splice 1000 2175 60
svmguide1 3089 4000 4
w1a 2477 47272 300

Table 1: Summarized information of the data sets used

For the data sets above, we compute the means and the standard errors of the results
over 100 runs. In addition, four larger real-world data sets are used to test the validity
of the framework for large-scale learning. They are a1a (Hettich et al., 1998; Platt, 1999),
splice (Hettich et al., 1998), svmguide1 (Hsu et al., 2003), and w1a (Platt, 1999).6 Each of
them comes with a benchmark test set, on which we report the results. Some information
of the data sets used is summarized in Table 1.

7.1 Comparison of Ensemble Learning Algorithms

Tables 2, 3, and 4 show the test performance of several ensemble learning algorithms on
different base hypothesis sets.7 We can see that SVM-Stump, SVM-Perc, and SVM-Dec are
usually better than AdaBoost and LPBoost with the same base hypothesis set, especially
for the cases of decision stumps and perceptrons. In noisy data sets, SVM-based infinite
ensemble learning always significantly outperforms AdaBoost and LPBoost. These results
demonstrate that it is beneficial to go from a finite ensemble to an infinite one with suitable
regularization. When comparing the two boosting approaches, LPBoost is at best com-
parable to AdaBoost on a small number of the data sets, which suggests that the success
of AdaBoost may not be fully attributed to its connection to (P3) or (P4).

6. These data sets are downloadable on tools page of LIBSVM (Chang and Lin, 2001a).
7. For the first 14 rows of Tables 2, 3, 4, and 5, results that are as significant as the best ones are marked

in bold; for the last 4 rows, the best results are marked in bold.
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data set SVM-Stump SVM-Mid AdaBoost-Stump LPBoost-Stump
twonorm 2.86± 0.04 3.10± 0.04 5.02± 0.06 5.58± 0.07
twonorm-n 3.08± 0.06 3.29± 0.05 12.7± 0.17 17.9± 0.19
threenorm 17.7± 0.10 18.6± 0.12 22.1± 0.12 24.1± 0.15
threenorm-n 19.0± 0.14 19.6± 0.13 26.1± 0.17 30.3± 0.16
ringnorm 3.97± 0.07 5.30± 0.07 10.1± 0.14 10.3± 0.14
ringnorm-n 5.56± 0.11 7.03± 0.14 19.6± 0.20 22.4± 0.21
australian 14.4± 0.21 15.9± 0.18 14.2± 0.18 19.8± 0.24
breast 3.11± 0.08 2.77± 0.08 4.41± 0.10 4.79± 0.12
german 24.7± 0.18 24.9± 0.17 25.4± 0.19 31.6± 0.20
heart 16.4± 0.27 19.1± 0.35 19.2± 0.35 24.4± 0.39
ionosphere 8.13± 0.17 8.37± 0.20 11.3± 0.25 11.5± 0.24
pima 24.1± 0.23 24.4± 0.23 24.8± 0.23 31.0± 0.24
sonar 16.6± 0.42 18.0± 0.37 19.4± 0.38 19.8± 0.37
votes84 4.76± 0.14 4.76± 0.14 4.27± 0.15 5.87± 0.16
a1a 16.2 16.3 16.0 16.3
splice 6.21 6.71 5.75 8.78
svmguide1 2.92 3.20 3.35 4.50
w1a 2.09 2.26 2.18 2.79

Table 2: Test error (%) of several ensemble learning algorithms using decision stumps

data set SVM-Perc AdaBoost-Perc LPBoost-Perc
twonorm 2.55± 0.03 3.11± 0.04 3.52± 0.05
twonorm-n 2.75± 0.05 4.53± 0.10 6.89± 0.11
threenorm 14.6± 0.08 17.3± 0.11 18.2± 0.11
threenorm-n 16.3± 0.10 20.0± 0.18 22.1± 0.13
ringnorm 2.46± 0.04 36.3± 0.14 37.4± 0.13
ringnorm-n 3.50± 0.09 37.8± 0.20 39.1± 0.15
australian 14.5± 0.17 15.7± 0.16 16.4± 0.17
breast 3.23± 0.08 3.49± 0.10 3.80± 0.10
german 24.6± 0.20 25.0± 0.18 26.4± 0.21
heart 17.6± 0.31 18.2± 0.32 19.8± 0.32
ionosphere 6.40± 0.20 11.4± 0.23 12.1± 0.25
pima 23.5± 0.21 24.8± 0.20 26.4± 0.19
sonar 15.6± 0.40 19.8± 0.43 22.5± 0.47
votes84 4.43± 0.14 4.37± 0.16 4.92± 0.16
a1a 15.7 20.0 18.6
splice 10.4 13.7 14.7
svmguide1 3.10 3.28 3.62
w1a 1.91 2.35 2.13

Table 3: Test error (%) of several ensemble learning algorithms using perceptrons
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data set SVM-Dec AdaBoost-Dec LPBoost-Dec
twonorm 2.87± 0.04 3.74± 0.05 4.80± 0.06
twonorm-n 3.10± 0.05 6.46± 0.09 7.89± 0.10
threenorm 15.0± 0.11 16.8± 0.09 18.3± 0.10
threenorm-n 16.8± 0.15 20.2± 0.16 22.0± 0.12
ringnorm 2.25± 0.05 4.33± 0.06 6.00± 0.10
ringnorm-n 2.67± 0.06 7.32± 0.12 8.76± 0.12
australian 14.3± 0.18 13.7± 0.16 13.8± 0.17
breast 3.18± 0.08 2.92± 0.09 3.94± 0.16
german 24.9± 0.20 24.5± 0.17 24.9± 0.19
heart 16.8± 0.31 19.5± 0.33 20.4± 0.35
ionosphere 6.48± 0.19 6.59± 0.19 6.81± 0.22
pima 24.0± 0.24 26.1± 0.21 26.4± 0.20
sonar 14.7± 0.42 19.6± 0.45 21.3± 0.42
votes84 4.59± 0.15 5.04± 0.14 5.95± 0.17
a1a 15.7 18.8 20.3
splice 3.77 2.94 3.77
svmguide1 3.28 3.22 3.17
w1a 2.37 2.53 3.01

Table 4: Test error (%) of several ensemble learning algorithms using decision trees

Note that SVM-Stump, SVM-Mid, AdaBoost-Stump, and LPBoost-Stump usually gen-
erate different kinds of ensembles: SVM-Stump produces infinite and nonsparse ones; SVM-
Mid produces finite and nonsparse ones; AdaBoost-Stump produces finite and sparse ones;
LPBoost-Stump produces finite and even sparser ones (since some of the selected ht may end
up having wt = 0). In Table 2, we see that SVM-Stump often outperforms SVM-Mid, which
is another evidence that an infinite ensemble could help. Interestingly, SVM-Mid often per-
forms better than AdaBoost-Stump, which means that a nonsparse ensemble introduced by
minimizing the `2-norm of w is better than a sparse one.

In Figure 3, we further illustrate the difference between the finite and infinite ensemble
learning algorithms by a simplified experiment. We show the decision boundaries generated
by the four algorithms on 300 training examples from the 2-D version of the twonorm data
set. The Bayes-optimal decision boundary is the line (x)1+(x)2 = 0. We can see that SVM-
Stump produces a decision boundary close to the optimal, SVM-Mid is slightly worse, while
AdaBoost-Stump and LPBoost-Stump fail to generate a decent boundary. SVM-Stump
obtains the smooth boundary by averaging over infinitely many decision stumps; SVM-Mid
can also generate a smooth boundary by constructing a nonsparse ensemble over a finite
number of decision stumps. Nevertheless, both LPBoost-Stump and AdaBoost-Stump, for
which sparsity could be observed from the axis-parallel decision boundaries, do not have the
ability to approximate the Bayes optimal boundary well. In addition, as can be seen near
the origin point of Figure 3(c), AdaBoost-Stump could suffer from overfitting the noise.

Note that traditional ensemble learning and our SVM-based framework differ in the
concept of sparsity. As illustrated in Subsection 2.2, traditional ensemble learning prefers
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Figure 3: Decision boundaries of ensemble learning algorithms on a 2-D twonorm data set

sparse ensemble classifiers, that is, ensembles that include a small number of hypothe-
ses. Our framework works with an infinite number of hypotheses, but results in a sparse
classifier in the support vector domain. Both concepts can be justified with various gen-
eralization bounds (Freund and Schapire, 1997; Graepel et al., 2005). Nevertheless, our
experimental results indicate that sparse ensemble classifiers are sometimes not sophisti-
cated enough in practice, especially when the base hypothesis set is simple. For example,
when using the decision stumps, a general data set may require many of them to describe a
suitable decision boundary. Thus, AdaBoost-Stump and LPBoost-Stump could be limited
by the finiteness and sparsity restrictions. The comparison between AdaBoost-Stump and
SVM-Mid indicates that the second restriction could be crucial. On the other hand, our
framework (SVM-Stump), which suffers from neither restrictions, can perform better by
averaging over an infinite number of hypotheses.

7.2 Comparison to Gaussian Kernel

In Table 5, we compare all the radial basis function kernels. We can see that SVM-Gauss,
being the state-of-the-art setting (Hsu et al., 2003), usually performs well. Its superior
performance on the artificial data sets is because they are generated from certain Gaus-
sian distributions. Nevertheless, all SVM-Stump, SVM-Perc, and SVM-Dec outperform
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data set SVM-Stump SVM-Perc SVM-Dec SVM-Gauss
twonorm 2.86± 0.04 2.55± 0.03 2.87± 0.04 2.64± 0.05
twonorm-n 3.08± 0.06 2.75± 0.05 3.10± 0.05 2.86± 0.07
threenorm 17.7± 0.10 14.6± 0.08 15.0± 0.11 14.6± 0.11
threenorm-n 19.0± 0.14 16.3± 0.10 16.8± 0.15 15.6± 0.15
ringnorm 3.97± 0.07 2.46± 0.04 2.25± 0.05 1.77± 0.04
ringnorm-n 5.56± 0.11 3.50± 0.09 2.67± 0.06 2.05± 0.07
australian 14.4± 0.21 14.5± 0.17 14.3± 0.18 14.7± 0.18
breast 3.11± 0.08 3.23± 0.08 3.18± 0.08 3.53± 0.10
german 24.7± 0.18 24.6± 0.20 24.9± 0.20 24.5± 0.21
heart 16.4± 0.27 17.6± 0.31 16.8± 0.31 17.5± 0.31
ionosphere 8.13± 0.17 6.40± 0.20 6.48± 0.19 6.54± 0.19
pima 24.1± 0.23 23.5± 0.21 24.0± 0.24 23.5± 0.20
sonar 16.6± 0.42 15.6± 0.40 14.7± 0.42 15.5± 0.50
votes84 4.76± 0.14 4.43± 0.14 4.59± 0.15 4.62± 0.14
a1a 16.2 15.7 15.7 16.2
splice 6.21 10.4 3.77 9.56
svmguide1 2.92 3.10 3.28 3.12
w1a 2.09 1.92 2.37 2.03

Table 5: Test error (%) of SVM with radial basis function kernels

data set SVM-Stump SVM-Perc SVM-Dec SVM-Gauss
twonorm 1.34 1.44 19.5 23.1
threenorm 1.69 1.69 23.1 31.1
ringnorm 1.50 1.60 23.7 27.9

Table 6: Parameter selection time (sec.) on a dual 1.7 GHz Intel Xeon CPU machine

SVM-Gauss on some data sets, which demonstrates that they could achieve decent test
performances as well.

Furthermore, SVM-Perc and SVM-Gauss share almost indistinguishable performance
on the real-world data sets, which is possibly because they both use the `2-norm distance
for measuring similarity. In addition, as discussed in Subsection 6.4, SVM-Perc enjoys
the benefit of faster parameter selection. For example, in our experiments, SVM-Gauss
involves solving 550 optimization problems, but SVM-Perc deals with only 55 problems.
Table 6 shows the speed comparison.8 We can qualitatively see that SVM-Stump and
SVM-Perc are much faster than SVM-Dec and SVM-Gauss.

Since SVM-Perc and SVM-Gauss perform similarly on real-world data sets, the benefit
of faster parameter selection makes SVM-Perc a favorable choice in practice. Furthermore,
SVM-Stump, albeit slightly worse than SVM-Perc or SVM-Gauss, could still be a useful

8. Solving each SVM optimization problem heavily depends on the condition number of the Gram ma-
trix (which depends on the kernel) and the soft-margin parameter C. Thus, it is not easy to compare the
training time between different kernels and the numbers here are meant to be interpreted qualitatively.
Similar results are observed when using real-world data sets as well (Lin, 2005).
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alternative in some applications where decision stump ensemble models are preferred, such
as those described in Subsection 6.4.

8. Conclusion

We derived two novel kernels based on the infinite ensemble learning framework. The
stump kernel embodies infinitely many decision stumps, and the perceptron kernel embodies
infinitely many perceptrons. These kernels can be simply evaluated by the `1- or `2-norm
distance between examples. We also explained that the Laplacian-RBF kernel embodies
infinitely many decision trees. SVM equipped with the kernels can generate infinite and
nonsparse ensembles, which are usually more robust than finite and sparse ones.

Experimental comparisons with AdaBoost and LPBoost showed that SVM with the
kernels usually performs much better than boosting approaches with the same base hy-
pothesis set, especially in the cases of decision stumps or perceptrons. Therefore, existing
applications that use boosting with decision stumps, perceptrons, or decision trees may be
improved by switching to SVM with the corresponding kernel.

In addition, we showed that the perceptron kernel shares similar performance to the
Gaussian-RBF kernel, while the former benefits from faster parameter selection. This prop-
erty makes the perceptron kernel favorable to the Gaussian-RBF kernel in practice.
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Appendix A. Derivation of Kernels

KS(x, x′) =
∑

q∈{−1,+1}

D∑
d=1

∫ Rd

Ld
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KP(x, x′) = r2
P

∫
‖θ‖2=1

[∫ R

−R
pθ,α(x)pθ,α(x′) dα

]
dθ

= r2
P

∫
‖θ‖2=1

[∫ R

−R
s+1,1,α(θT x)s+1,1,α(θT x′) dα

]
dθ

= 2r2
P

∫
‖θ‖2=1

(
R−

∣∣θT x− θT x′
∣∣) dθ

= 2r2
P

∫
‖θ‖2=1

(
R−

∥∥x− x′
∥∥

2

∣∣cos
(
angle

〈
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∥∥x− x′
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2
.

The last equality comes from the symmetry when integrating over every possible θ.
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Gunnar Rätsch, Ayhan Demiriz, and Kristin P. Bennett. Sparse regression ensembles in
infinite and finite hypothesis spaces. Machine Learning, 48(1–3):189–218, 2002.
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