A third linear model

$$s = \sum_{i=0}^{d} w_i x_i$$

linear classification

$$h(\mathbf{x}) = \operatorname{sign}(s)$$

linear regression

$$h(\mathbf{x}) = s$$

logistic regression

$$h(\mathbf{x}) = \theta(s)$$

The logistic function θ

The formula:

$$\theta(s) = \frac{e^s}{1 + e^s}$$

soft threshold: uncertainty

sigmoid: flattened out 's'

Probability interpretation

 $h(\mathbf{x}) = \theta(s)$ is interpreted as a probability

Example. Prediction of heart attacks

Input x: cholesterol level, age, weight, etc.

 $\theta(s)$: probability of a heart attack

The signal $s = \mathbf{w}^{\mathsf{T}}\mathbf{x}$ "risk score"

Genuine probability

Data (\mathbf{x}, y) with binary y, generated by a noisy target:

$$P(y \mid \mathbf{x}) = \begin{cases} f(\mathbf{x}) & \text{for } y = +1; \\ 1 - f(\mathbf{x}) & \text{for } y = -1. \end{cases}$$

The target $f:\mathbb{R}^d o [0,1]$ is the probability

Learn $g(\mathbf{x}) = \theta(\mathbf{w}^{\mathsf{T}} \mathbf{x}) \approx f(\mathbf{x})$